Подписано цифровой

Ляпина Татьяна додписью: Ляпина Татьяна Анатольевна

Дата: 2022.06.01 12:19:44

+05'00'

Приложение № 13

к основной общеобразовательной программе – образовательной программе основного общего образования МАОУ СОШ № 20 (утверждена приказом от 25.08.2022 г. № 156)

Рабочая программа учебного предмета «Химия»

п. Баранчинский

Пояснительная записка.

Перечень нормативных документов, используемых для составления рабочей программы:

Рабочая программа учебного курса по химии для 8- 9 класса разработана на основе ФГОС второго поколения, примерной программы основного общего образования по химии,

Примерной программы основного общего образования по химии и Программы курса химии для 8-9 классов общеобразовательных учреждений, автор Н.Н. Гара. (Химия).

Рабочие программы. Предметная линия учебников Г.Е.Рудзитиса, Ф.Г. Фельдмана 8-9 классы: учеб. пособие для общеобразовательных организаций / Н.Н Гара. - 3-е изд., перераб.-М.: Просвещение, 2019. -48с. — ISBN 987-5-09-065302-2). Данная рабочая программа реализуется в учебниках для общеобразовательных учреждений Г.Е. Рудзитиса и Ф.Г. Фельдмана «Химия. 8 класс» и «Химия. 9 класс».

Рабочая программа по химии для основной школы составлена на основе: Фундаментального ядра содержания общего образования и в соответствии с Государственным стандартом общего образования (приказ Министерства образования и науки Российской Федерации от 17.12.2010 г. № 1897);

Федерального Закона от 29 декабря 2012 года, №273 (Федеральный закон «Об образовании в РФ»);

Приказ Минобрнауки России от 28 декабря 2010 г. № 2106 «Об утверждении федеральных требований к образовательным учреждениям в части охраны здоровья обучающихся, воспитанников»;

Постановления Главного Государственного санитарного врача Российской Федерации «Об утверждении СанПин 2.4.2821-10 «Санитарно-эпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях» от 29.12.2010 №189;

Приказа Минобрнауки России от 31.03.2014 № 253 «Об утверждении федерального перечня учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования». Учебного плана «МАОУ СОШ №20» на 2021-2022 уч. год;

Положения о рабочей программе, разработанного в «МАОУ СОШ №20». За основу рабочей программы взята программа курса химии для 8-9 классов общеобразовательных учреждений, опубликованная издательством «Просвещение» в 2019 году (Химия. Рабочие программы. Предметная линия учебников Г.Е.Рудзитиса, Ф.Г. Фельдмана 8-9 классы: учеб. пособие для общеобразоват. организаций/ Н.Н Гара. - 3-е изд., перераб.-М.: Просвещение, 2021. - 48с. — ISBN 987-5-09-065302-2).

Приказ от 8 июня 2015г. №576 «О внесении изменений в федеральный перечень учебников, рекомендованных к использованию при реализации имеющих государственную аккредитацию образовательных программ начального и общего, основного общего, среднего общего образования, утвержденного приказом Министерства образования и науки РФ от 31 марта 2014г. № 253. (http://минобрнауки.рф/документы/5812).

Примерная основная образовательная МАОУ СОШ №20. Основная школа;

Устав Муниципального автономного общеобразовательного учреждения средней общеобразовательной школы N 20.

В предметах естественно-математического цикла ведущую роль играет познавательная деятельность и соответствующие ей познавательные учебные действия. В связи с этим основными целями обучения химии в основной школе являются:

- 1. Формирование у обучающихся умения видеть и понимать ценность образования, значимость химического знания для каждого человека независимо от его профессиональной деятельности; умения различать факты и оценки, сравнивать оценочные выводы, видеть их связь с критериями оценок и связь критериев с определенной системой ценностей, формулировать и обосновывать собственную позицию;
- 2. Формирование у обучающихся целостного представления о мире и роли химии в создании современной естественно-научной картины мира; умения объяснять объекты и процессы окружающей действительности-природной, социальной, культурной, технической среды, используя для этого химические знания;

3. Приобретение обучающимися опыта разнообразной деятельности, познания и самопознания; ключевых навыков (ключевых компетентностей), имеющих универсальное значение для различных видов деятельности: решения проблем, принятия решений, поиска, анализа и обработки информации, коммуникативных навыков, навыков измерений, сотрудничества, безопасного обращения с веществами в повседневной жизни.

Задачами изучения учебного предмета «Химия» в основной школе являются:

учебные: формирование системы химических знаний как компонента естественнонаучной картины мира;

развивающие: развитие личности обучающихся, их интеллектуальное и нравственное совершенствование, формирование у них гуманистических отношений и экологически целесообразного поведения в быту и в трудовой деятельности;

воспитательные: формирование умений безопасного обращения с веществами, используемыми в повседневной жизни; выработка понимания общественной потребности в развитии химии, а также формирование отношения к химии как к возможной области будущей практической деятельности.

Общая характеристика учебного предмета «Химия».

В соответствии с Федеральным государственным образовательным стандартом основного общего образования учащиеся должны овладеть такими познавательными учебными действиями, как умение формулировать проблему и гипотезу, ставить цели и задачи, строить планы достижения целей и решения поставленных задач, проводить эксперимент и на его основе делать выводы и умозаключения, представлять их и отстаивать вою точку зрения. Кроме этого, учащиеся должны овладеть приемами, связанными с определением понятий: ограничивать их, описывать, характеризовать и сравнивать. Следовательно, при изучении химии в основной школе учащиеся должны овладеть учебными действиями, позволяющими им достичь личностных, предметных и метапредметных образовательных результатов.

Предлагаемая программа по химии раскрывает вклад учебного предмета в достижение целей основного общего образования и определяет важнейшие содержательные линии предмета:

- вещество знания о составе и строении веществ, их важнейших физических и химических свойствах, биологическом действии;
- химическая реакция знания об условиях, в которых проявляются химические свойства веществ, способах управления химическими процессами;
- веществ знания и опыт практической деятельности с веществами, которые наиболее часто употребляются в повседневной жизни, широко используются в промышленности, сельском хозяйстве, на транспорте
- язык химии система важнейших понятий химии и терминов, в которых они описываются, номенклатура неорганических веществ, т. е. их названия (в том числе и тривиальные), химические формулы и уравнения, а также правила перевода информации с естественного языка на язык химии и обратно.

При отборе содержания, конкретизирующего программу, учитывалось, что перед общим образованием не стоит задача профессиональной подготовки обучающихся. Это определило построение курса как общекультурного, направленного, прежде всего на формирование и развитие интереса к изучению химии. Учтена основная особенность подросткового возраста — начало перехода от детства к взрослости, который характеризуется развитием познавательной сферы.

На этапе основного общего среднего образования происходит включение обучающихся в проектную и исследовательскую деятельность, основу которой составляют такие универсальные учебные действия, как умение видеть проблемы, ставить вопросы, классифицировать, наблюдать, проводить эксперимент, делать выводы и умозаключения, объяснять, доказывать, защищать свои идеи, давать определения понятиям. Сюда же относятся приёмы, сходные с определением понятий: описание, характеристика, разъяснение, сравнение, различение. Формирование этих универсальных учебных действий начинается ещё в начальной школе, а в курсе химии основной школы происходит их развитие и совершенствование. В связи с этим резервные часы планируется использовать на формирование и развитие умений проектной и исследовательской деятельности, умение видеть проблемы, делать выводы и умозаключения.

Место учебного предмета в учебном плане

Особенностью содержания курса «Химия» являются то, что в базисном учебном (образовательном) предмет последним изучения плане ЭТОТ появляется естественнонаучных дисциплин. Данная необходимость освоения объясняется тем, что школьники должны обладать не только определенным запасом предварительных естественнонаучных знаний, но и достаточно хорошо развитым абстрактным мышлением. Учащимися уже накоплены знания по смежным дисциплинам цикла: биологии, физики, математики, географии, сформировались умения анализировать, вести наблюдения, сравнивать объекты наблюдения.

В соответствии с учебным планом на изучение химии в 8-9 классах отводится по 2 часа в неделю, 70 часов в год, при нормативной продолжительности учебного года 35 учебных недель. С учетом неизбежных потерь учебного времени, вызываемых различными объективными причинами, а также необходимости выделения дополнительного времени на изучение отдельных вопросов курса химии программой предусмотрено резервное время - 3 часа.

Ценностные ориентиры содержания учебного предмета

Ценностные ориентиры содержания курса химии в основной школе определяются спецификой химии как науки. Понятие «ценности» включает единство объективного (сам объект) и субъективного (отношение субъекта к объекту), поэтому в качестве ценностных ориентиров химического образования выступают объекты, изучаемые в курсе химии, к которым у обучающихся формируется ценностное отношение. При этом ведущую роль играют познавательные ценности, так как данный учебный предмет входит в группу предметов познавательного цикла, главная цель которых заключается в изучении природы.

Основу познавательных ценностей составляют научные знания, научные методы познания, а ценностные ориентации, формируемые у обучающихся в процессе изучения химии, проявляются:

- в признании ценности научного знания, его практической значимости, достоверности;
- в ценности химических методов исследования живой и неживой природы;
- в понимании сложности и противоречивости самого процесса познания как извечного стремления к Истине.

В качестве объектов ценностей труда и быта выступают творческая созидательная деятельность, здоровый образ жизни, а ценностные ориентации содержания курса химии могут рассматриваться как формирование:

- •уважительного отношения к созидательной, творческой деятельности;
- понимания необходимости здорового образа жизни;
- •потребности в безусловном выполнении правил безопасного использования веществ в повседневной жизни:
- сознательного выбора будущей профессиональной деятельности.

Курс химии обладает возможностями для формирования коммуникативных ценностей, основу которых составляют процесс общения, грамотная речь, а ценностные ориентации направлены на воспитание у учащихся:

- правильного использования химической терминологии и символики;
- потребности вести диалог, выслушивать мнение оппонента, участвовать в дискуссии;
- способности открыто выражать и аргументированно отстаивать свою точку зрения.

Результаты изучения учебного предмета

Деятельность образовательного учреждения общего образования в обучении химии должна быть направлена на достижение обучающимися следующих *личностных* результатов:

- 1) В ценностно-ориентационной сфере чувство гордости за российскую химическую науку, гуманизм, отношение к труду, целеустремленность, самоконтроль и самооценка;
- 2) В трудовой сфере готовность к осознанному выбору дальнейшей образовательной траектории;
- 3) В познавательной (когнитивной, интеллектуальной) сфере мотивация учения, умение управлять своей познавательной деятельностью.

Метапредметными результатами освоения выпускниками основной школы программы по химии являются:

1) Владение универсальными естественнонаучными способами деятельности: наблюдение, измерение, эксперимент, учебное исследование; применение основных методов познания

(системно-информационный анализ, моделирование) для изучения различных сторон окружающей действительности;

- 2) Использование универсальных способов деятельности по решению проблем и основных интеллектуальных операций: формулирование гипотез, анализ и синтез, сравнение, обобщение, систематизация, выявление причинно-следственных связей, поиск аналогов;
- 3) Умение генерировать идеи и определять средства, необходимые для их реализации;
- 4)Умение определять цели и задачи деятельности, выбирать средства реализации цели и применять их на практике;
- 5) Использование различных источников для получения химической информации.

Предметными результатами освоения выпускниками основной школы программы по химии являются.

- 1) В познавательной сфере:
 - давать определения изученных понятий: вещество (химический элемент, атом, ион, молекула, кристаллическая решетка, вещество, простые и сложные вещества, химическая фор-мула, относительная атомная масса, относительная молекулярная масса, валентность, оксиды, кислоты, основания, соли, амфотерность, индикатор, периодическая система, изотопы, химическая связь, электроотрицательность, степень окисления, электролит); химическая реакция (химическое уравнение, генетическая связь, окисление, восстановление, электролитическая диссоциация, скорость химической реакции);
 - формулировать периодический закон Д. И. Менделеева и раскрывать его смысл;
 - описывать демонстрационные и самостоятельно проведенные эксперименты, используя для этого естественный (русский, родной) язык и язык химии;
 - описывать и различать изученные классы неорганических соединений, простые и сложные вещества, химические реакции;
 - классифицировать изученные объекты и явления;
 - наблюдать демонстрируемые и самостоятельно проводимые опыты, химические реакции, протекающие в природе и в быту;
 - делать выводы и умозаключения из наблюдений, изученных
 - химических закономерностей, прогнозировать свойства неизученных веществ по аналогии со свойствами изученных;
 - структурировать изученный материал и химическую информацию, полученную из других источников;
 - моделировать строение атомов элементов первого —третьего периодов, строение простейших молекул.
- 2) В ценностно-ориентационной сфере:
 - анализировать и оценивать последствия для окружающей среды бытовой и производственной деятельности человека, связанной с переработкой и использованием веществ;
 - разъяснять на примерах (приводить примеры, подтверждающие) материальное единство и взаимосвязь компонентов живой и неживой природы и человека как важную часть этого единства;
 - строить свое поведение в соответствии с принципами бережного отношения к природе.
- 3) В трудовой сфере:
 - планировать и проводить химический эксперимент;
 - использовать вещества в соответствии с их предназначением и свойствами, описанными в инструкциях по применению.
- 4) В сфере безопасности жизнедеятельности:
 - оказывать первую помощь при отравлениях, ожогах и других травмах, связанных с веществами и лабораторным оборудованием.

Содержание основного общего образования по химии.

Раздел 1. Основные понятия химии (уровень атомно-молекулярных представлений)

Предмет химии. Методы познания в химии: наблюдение, эксперимент, измерение. Источники химической информации: химическая литература, интернет.

Чистые вещества и смеси. Очистка веществ. Простые и сложные вещества. Металлы и неметаллы. Химический элемент, атом, молекула. Знаки химических элементов. Химические формулы. Валентность химических элементов. Определение валентности элементов по формулам бинарных соединений. Составление химических формул бинарных соединений по валентности.

Относительная атомная масса. Относительная молекулярная масса. Массовая доля химического элемента в сложном веществе. Количество вещества. Моль. Молярная масса и молярный объем. Физические явления и химические реакции. Признаки химических реакций и условия возникновения и течения химических реакций. Закон сохранения массы веществ при химических реакциях. Химические уравнения. Коэффициенты в уравнениях химических реакций как отношения количеств веществ, вступающих и образующихся в результате химической реакции. Простейшие расчеты по уравнениям химических реакций.

Основные классы неорганических соединений. Номенклатура неорганических веществ. Кислород. Воздух. Горение. Оксиды металлов и неметаллов. Водород. Вода. очистка воды. Аэрация воды. Взаимодействие воды с оксидами металлов и неметаллов. Кислоты, классификация и свойства: взаимодействие с металлами, оксидами металлов. Основания, классификация и свойства: взаимодействие с оксидами неметаллов, кислотами. Амфотерность. Кислотно-основные индикаторы. Соли. Средние соли. Взаимодействие солей с металлами, кислотами, щелочами. Связь между основными классами неорганических соединений.

Первоначальные представления о естественных семействах (группах) химических элементов: щелочные металлы, галогены.

Раздел 2. Периодический закон и периодическая система химических элементов Д.И. Менделеева. Строение вещества.

Периодический закон Д.И.Менделеева. История открытия периодического закона. Значение периодического закона для развития науки.

Периодическая система как естественно — научная классификация химических элементов. Табличная форма представления классификации химических элементов. Структура таблицы «Периодическая система химических элементов Д.И. Менделеева». Физический смысл порядкового номера элемента, номера периода и номера группы (для элементов А-групп). Строение атома: ядро и электронная оболочка. Состав атомных ядер: протоны и нейтроны. Изотопы. Заряд атомного ядра, массовое число, относительная атомная масса. Электронная оболочка атома. Электронные слои атомов элементов малых периодов.

Химическая связь. Электроотрицательность атомов. Ковалентная полярная и неполярная связь. Ионная связь. Валентность, степень окисления, заряд иона. Электролиты и неэлектролиты. Катионы и анионы.

Раздел 3. Многообразие химических реакций.

Классификация химических реакций: реакции соединения, разложения, замещения, обмена, экзотермические, эндотермические, окислительно-восстановительные, необратимые, обратимые. Скорость химических реакций. Факторы, влияющие на скорость химических реакций.

Растворы. Электролитическая диссоциация. Электролитическая диссоциация кислот, оснований и солей в водных растворах. Реакции ионного обмена в растворах электролитов.

Раздел 4. Многообразие веществ.

Естественные семейства химических элементов металлов и неметаллов. Общая характеристика неметаллов на основе их положения в периодической системе. Закономерности изменения физических и химических свойств неметаллов - простых веществ, их водородных соединений, высших оксидов и кислородосодержащих кислот на примере элементов второго и третьего периодов.

Общая характеристика металлов на основе их положения в периодической системе. Закономерности изменения физических и химических свойств металлов - простых веществ, их оксидов и гидроксидов на примере элементов второго и третьего периодов. Амфотерные соединения алюминия. Общая характеристика железа, его оксидов и гидроксидов.

Раздел 5. Экспериментальная химия.

Демонстрационный эксперимент.

- 1. Примеры физических явлений.
- 2. Примеры химических реакций с ярко выраженными изучаемыми признаками.

- 3. Реакции соединения, разложения, замещения и обмена.
- 4. Реакции, иллюстрирующие свойства и взаимосвязи основных классов неорганических соединений.
- 5. Опыты, иллюстрирующие закономерности изменения свойств щелочных металлов и галогено
- 6. Опыты, иллюстрирующие закономерности изменения свойств гидроксидов и кислородосодержащих кислот элементов одного периода.
- 7. Примеры ОВР.
- 8. Факторы, влияющие на скорость химических реакций.
- 9. Примеры эндо- и экзотермических реакций.
- 10. Сравнение электропроводности растворов электролитов и неэлектролитов.
- 11. Реакции ионного обмена.
- 12. Опыты, иллюстрирующие физические и химические свойства изучаемых веществ.

Лабораторный эксперимент.

- 1. Примеры физических явлений.
- 2. Примеры химических реакций.
- 3. Разделение смесей.
- 4. Признаки и условия течения химических реакций.
- 5. Типы химических реакций.
- 6. Свойства и взаимосвязи основных классов неорганических соединений.
- 7. Факторы, влияющие на скорость химических реакций.
- 8. Свойства солей, кислот и оснований как электролитов.
- 9. Опыты, иллюстрирующие физические и химические свойства изучаемых веществ.
- 10. Опыты по получению изученных веществ.

Расчетные задачи.

- 1. Вычисление относительной молекулярной и молярной массы вещества по его химической формуле.
- 2. Расчет массовой доли химического элемента в соединении.
- 3. Расчет массовой доли растворенного вещества в растворе.
- 4. Вычисления по химическим уравнениям массы или количества вещества одного из участвующих или получающихся в реакции соединений по известной массе или количеству вещества другого соединения.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ 8 КЛАСС

№	Тема	Количество	Количество	Количество
темы		часов	КР	ПР
1	Первоначальные химические понятия	22	1	2
2	Кислород. Водород	8	1	2
3	Вода. Растворы	8	1	1
4	Количественные отношения в химии	5	ı	-
4	Основные классы неорганических соединений	12	1	1
5	Периодический закон и периодическая система химических элементов Д.И. Менделеева. Строение атома.	7	1	-
6	Строение веществ. Химическая связь	7	1	-
Итого	_	69	6	6

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ 9 КЛАСС

<u>№</u> темы	Тема	Количество часов	Количество КР	Количество ПР
1	Повторение.	2	1	-
2	Классификация химических реакций	7	1	1
2	Химические реакции в водных растворах	9	1	1
3	Неметаллы IV – VII групп и их соединения	28	2	4
4	Металлы и их соединения	11	1	1
5	Первоначальные сведения об органических веществах	10	1	-
6	Резервное время	1	-	-
Итого		68	7	7

Распределение содержания программы по классам:

8 класс.

Раздел I. Основные понятия химии.

Тема 1. Первоначальные химические понятия (22 часа)

Предмет химии. Химия как часть естествознания. Вещества и их свойства. Чистые вещества и смеси. Методы познания в химии: наблюдение, эксперимент. Приемы безопасной работы с оборудованием и веществами. Строение пламени.

Чистые вещества и смеси. Способы очистки веществ: отстаивание, фильтрование, выпаривание, кристаллизация, дистилляция. Физические и химические явления. Химические реакции. Признаки химических реакций и условия возникновения и течения химических реакций.

Атомы, молекулы и ионы. Вещества молекулярного и немолекулярного строения. Кристаллические и аморфные вещества. Простые и сложные вещества. Химический элемент. Металлы и неметаллы. Атомная единица массы. Относительная атомная масса. Язык химии. Знаки химических элементов. Закон постоянства состава вещества. Химические формулы. Относительная молекулярная масса. Качественный и количественный состав вещества. Вычисления по химическим формулам. Массовая доля химического элемента в сложном веществе. Тепловые эффекты химических реакций. Экзотермические и эндотермические реакции. Термохимические уравнения. Расчеты по термохимическим уравнениям.

Валентность химических элементов. Определение валентности элементов по формулам бинарных соединений. Составление химических формул бинарных соединений по валентности. Атомно-молекулярное учение. Закон сохранения массы веществ. Жизнь и деятельность М.В. Ломоносова. Химические уравнения. Типы химических реакций.

Тема 2. Кислород. Горение (5 часов).

Кислород. Нахождение в природе. Получение кислорода в лаборатории и промышленности. Физические и химические свойства кислорода. Горение. Оксиды. Применение кислорода. Круговорот кислорода в природе. Воздух и его состав. Защита атмосферного воздуха от загрязнений.

Тема 3. Водород (3 часа).

Водород. Нахождение в природе. Получение водорода в лаборатории и промышленности. Физические и химические свойства водорода. Водород — восстановитель. Меры безопасности при работе с водородом. Применение водорода.

Тема 4. Вода. Растворы (8 часов).

Вода. Методы определения состава воды — анализ и синтез. Физические свойства воды. Вода в природе и способы ее очистки. Химические свойства воды. Применение воды. Вода — растворитель. Растворимость веществ в воде. Массовая доля растворенного вещества.

Тема 5. Количественные отношения в химии (5 часов)

Закон Авогадро и его следствия. Молярный объем. Относительная плотность газов. Простейшие расчеты объема, количества вещества по уравнению химической реакции.

Тема 6. Основные классы неорганических соединений. (12 часов)

Важнейшие классы неорганических соединений. Оксиды: состав, классификация. Основные и кислотные оксиды. Номенклатура оксидов. Физические и химические свойства, получение и применение оксидов.

Гидроксиды. Классификация гидроксидов. Основания. Состав. Щелочи и нерастворимые основания. Номенклатура. Физические и химические свойства оснований. Реакция нейтрализации. Получение и применение оснований. Амфотерные оксиды и гидроксиды.

Кислоты. Состав. Классификация. Номенклатура. Физические и химические свойства кислот. Ряд активности металлов.

Соли. Состав. Классификация. Номенклатура. Физические свойства солей. Растворимость солей в воде. Химические свойства солей. Способы получения солей. Применение солей.

Генетическая связь между основными классами неорганических соединений.

Демонстрации.

Ознакомление с образцами простых и сложных веществ. Способы очистки веществ: кристаллизация, дистилляция, хроматография. Опыты, подтверждающие закон сохранения массы веществ. Примеры экзо- и эндотермических реакций. Получение и собирание кислорода методом вытеснения воздуха и воды. Определение состава воздуха. Коллекция нефти, каменного угля и продуктов их переработки. Получение водорода в аппарате Кипа, проверка водорода на чистоту, горение водорода, собирание водорода методом вытеснения воздуха и воды. Анализ воды. Синтез воды. Знакомство с образцами оксидов, кислот, оснований и солей. Нейтрализация щёлочи кислотой в присутствии индикатора.

Лабораторные опыты.

Рассмотрение веществ с различными физическими свойствами. Разделение смеси с помощью магнита. Примеры физических и химических явлений. Реакции, иллюстрирующие основные признаки характерных реакции. Разложение основного карбоната меди (II). Реакция замещения меди железом. Ознакомление с образцами оксидов. Взаимодействие водорода с оксидом меди (II). Опыты, подтверждающие химические свойства кислот, оснований.

Практические работы

- Правила техники безопасности при работе в химическом кабинете. Ознакомление с лабораторным оборудованием.
- Очистка загрязнённой поваренной соли.
- Получение и свойства кислорода.
- Получение водорода и изучение его свойств.
- Приготовление растворов солей с определённой массовой долей растворённого вещества.
- Решение экспериментальных задач по теме «Основные классы неорганических соелинений».

Расчетные задачи:

Вычисление относительной молекулярной массы вещества по формуле. Вычисление массовой доли элемента в химическом соединении. Установление простейшей формулы вещества по массовым долям элементов.

Нахождение массовой доли растворённого вещества в растворе. Вычисление массы растворённого вещества и воды для приготовления раствора определённой концентрации. Вычисления по термохимическим уравнениям реакций.

Вычисления по химическим уравнениям массы, объема и количества вещества одного из продуктов реакции по массе или объему исходного вещества, количеству вещества, содержащего определённую долю примесей.

Раздел II. Периодический закон. Строение атома. (7 часов).

Первые попытки классификации химических элементов. Понятие о группах сходных элементов. Естественные семейства щелочных металлов и галогенов. Благородные газы. Периодический закон Д.И.Менделеева. Периодическая система как естественно — научное классификация химических элементов. Табличная форма представления классификации химических элементов. Структура таблицы «Периодическая система химических элементов Д.И. Менделеева» (короткая форма): А- и Б- группы, периоды. Физический смысл порядкового элемента, номера периода, номера группы (для элементов А-групп).

Строение атома: ядро и электронная оболочка. Состав атомных ядер: протоны и нейтроны. Изотопы. Заряд атомного ядра, массовое число, относительная атомная масса. Современная формулировка понятия «химический элемент».

Электронная оболочка атома: понятие об энергетическом уровне (электронном слое), его ёмкости. Заполнение электронных слоев у атомов элементов первого – третьего периодов. Современная формулировка периодического закона.

Значение периодического закона. Научные достижения Д.И. Менделеева: исправление относительных атомных масс, предсказание существования неоткрытых элементов, перестановки химических элементов в периодической системе. Жизнь и деятельность Д.И. Менделеева.

Демонстрации:

Физические свойства щелочных металлов. Взаимодействие оксидов натрия, магния, фосфора, серы с водой, исследование свойств полученных продуктов. Взаимодействие натрия и калия с водой. Физические свойства галогенов. Взаимодействие алюминия с хлором, бромом и йодом. Количественные отношения в химии. Количество вещества. Моль. Молярная масса. Закон Авогадро. Молярный объем газов. Относительная плотность газов. Объемные отношения газов при химических реакциях.

Раздел III. Строение вещества.

Тема: Строение вещества. Химическая связь. (7 часов)

Электроотрицательность химических элементов. Основные виды химической связи: ковалентная неполярная, ковалентная полярная, ионная. Валентность элементов в свете электронной теории. Степень окисления. Правила определения степеней окисления элементов. Окислительно-восстановительные реакции. Окислитель, восстановитель, процессы окисления и восстановления. Составление уравнений окислительно-восстановительных реакций с помощью метода электронного баланса.

Демонстрации:

Сопоставление физико-химических свойств соединений с ковалентными и ионными связями. Кристаллические решетки: ионная, атомная и молекулярная.

9 класс.

Раздел I. Многообразие химических реакций. (16 часов) Тема: Классификация химических реакций (7 часов).

Химические свойства основных классов неорганических соединений в свете представлений окислительно-восстановительных реакций. Окислительно-восстановительные реакции. Окислитель, восстановитель, процессы окисления и восстановления. Составление уравнений окислительно-восстановительных реакций с помощью метода электронного баланса. Тепловой эффект химических реакций. Эндотермические и экзотермические реакции. Скорость химических реакций. Факторы, влияющие на скорость химических реакций. Первоначальное представление о катализе. Обратимые реакции. Понятие о химическом равновесии.

Тема: Химические реакции в водных растворах (9 часов).

Химические реакции в водных растворах. Электролиты и неэлектролиты. Ионы. Катионы и анионы. Гидратная теория растворов. Электролитическая диссоциация кислот, оснований и солей. Слабые и сильные электролиты. Степень диссоциации. Степень диссоциации. Реакции ионного обмена. Условия течения реакций ионного обмена до конца. Понятие о гидролизе солей. Демонстрации:

Взаимодействие цинка с соляной и уксусной кислотой. Взаимодействие гранулированного цинка и цинковой пыли с соляной кислотой.

Взаимодействие оксида меди (II) с серной кислотой разной концентрации при разных температурах. Горение угля в концентрированной азотной кислоте. Горение серы в расплавленной селитре. Испытание растворов веществ на электрическую проводимость. Движение ионов в электрическом поле.

Практические работы:

Изучение влияния условий проведения химической реакции на её скорость.

Решение экспериментальных задач по теме «Свойства кислот, солей и оснований как электролитов»

Лабораторные опыты:

Реакции обмена между растворами электролитов.

Раздел II. Многообразие веществ (40 часов).

Тема: Галогены (4 часа).

Неметаллы. Галогены. Положение в периодической системе химических элементов, строение их атомов. Нахождение в природе. Физические и химические свойства галогенов. Получение и применение галогенов. Хлор. Физические и химические свойства хлора. Применение хлора. Хлороводород. Физические свойства. Получение. Соляная кислота и её соли. Качественная реакция на хлорид-ионы. Распознавание хлоридов, бромидов, иодидов/

Физические свойства галогенов. Получение хлороводорода и растворение его в воде.

Тема: Кислород и сера (8 часов).

Кислород и сера. Положение кислорода и серы в ПСХЭ, строение их атомов. Сера. Аллотропия серы. Физические и химические свойства. Нахождение в природе. Применение серы. Сероводород. Сероводородная кислота и ее соли. Качественная реакция на сульфид-ионы. Оксид серы (IV). Физические и химические свойства. Применение. Сернистая кислота и ее соли. Качественная реакция на сульфит-ионы. Оксид серы (VI). Серная кислота. Химические свойства разбавленной и концентрированной серной кислоты. Качественная реакция на сульфат-ионы. Химические реакции, лежащие в основе получения серной кислоты в промышленности. Применение серной кислоты.

Тема: Азот и фосфор (8 часов).

Азот и фосфор. Положение азота и фосфора в ПСХЭ, строение их атомов. Азот, физические и химические свойства, получение и применение. Круговорот азота в природе. Аммиак: физические и химические свойства, получение и применение. Соли аммония. Азотная кислота и ее свойства. Окислительные свойства азотной кислоты. Получение азотной кислоты в лаборатории. Химические реакции, лежащие в основе получения азотной кислоты в промышленности. Применение азотной кислоты. Соли азотной кислоты и их применение. Азотные удобрения.

Фосфор. Аллотропия фосфора. Физические и химические свойства фосфора. Оксид фосфора (V). Ортофосфорная кислота и ее соли. Фосфорные удобрения.

Тема: Углерод и кремний (8 часов).

Углерод и кремний. Положение углерода и кремния в ПСХЭ, строение их атомов. Углерод. Аллотропия углерода. Физические и химические свойства углерода. Адсорбция. Угарный газ, свойства и физиологическое действие на организм. Углекислый газ. Угольная кислота и ее соли. Качественные реакции на карбонат-ионы. Круговорот углерода в природе. Органические соединения углерода.

Кремний. Оксид кремния (4). Кремниевая кислота и ее соли. Стекло. Цемент.

Тема: Металлы (11 часов).

Металлы. Положение металлов в ПСХЭ Д.И.Менделеева, строение их атомов. Металлическая связь. Физические свойства металлов. Ряд активности металлов. Химические свойства металлов. Общие способы получения металлов. Сплавы металлов. Щелочные металлы. Положение щелочных металлов в периодической системе, строение их атомов. Нахождение в природе. Магний и кальций, их важнейшие соединения. Жесткость воды и способы ее устранения.

Алюминий. Положение алюминия в периодической системе, строение его атома. Нахождение в природе. Физические и химические свойства алюминия. Амфотерность оксида и гидроксида алюминия.

Железо. Положение железа в периодической системе, строение его атома. Нахождение в природе. Физические и химические свойства железа. Важнейшие соединения железа: оксиды, гидроксиды и соли железа (II) и железа (III). Качественные реакции на ионы.

Демонстрации:

Аллотропные модификации серы. Образцы природных сульфидов и сульфатов.

Получение аммиака и его растворение в воде. Ознакомление с образцами природных нитратов, фосфатов. Модели кристаллических решёток алмаза и графита. Знакомство с образцами природных карбонатов и силикатов. Знакомство с образцами важнейших соединений натрия, калия, природных соединений кальция, рудами железа, соединениями алюминия. Взаимодействие щелочных, щелочноземельных металлов и алюминия с водой. Сжигание железа в кислороде и хлоре.

Практические работы:

Решение экспериментальных задач по теме «Кислород и сера».

Получение аммиака и изучение его свойств.

Получение оксида углерода (IV) и изучение его свойств. Распознавание карбонатов.

Решение экспериментальных задач по теме «Металлы и их соединения».

Лабораторные опыты:

Вытеснение галогенами друг друга из растворов их соединений.

Качественные реакции сульфид-, сульфит- и сульфат- ионов в растворе.

Ознакомление с образцами серы и её природными соединениями.

Взаимодействие солей аммония со щелочами.

Качественные реакции на карбонат- и силикат- ионы.

Качественная реакция на углекислый газ.

Изучение образцов металлов. Взаимодействие металлов с растворами солей. Ознакомление со свойствами и превращениями карбонатов и гидрокарбонатов. Получение гидроксида алюминия и взаимодействие его с кислотами и щелочами. Качественные реакции на ионы Fe^{2+} и Fe^{3+}

Расчетные задачи:

Вычисления по химическим уравнениям массы, объёма или количества вещества одного из продуктов реакции по массе исходного вещества, объёму или количеству вещества, содержащего определённую долю примесей.

Раздел III. Краткий обзор важнейших органических веществ (10 часов).

Особенности органической химии. Неорганические и органические соединения. Углерод – основа жизни на Земле. Особенности строения атома углерода в органических соединениях.

Углеводороды. Предельные углеводороды. Метан, этан, пропан – простейшие представители предельных углеводородов. Структурные формулы углеводородов. Гомологический ряд предельных углеводородов. Гомологи. Физические и химические свойства предельных углеводородов. Реакции горения и замещения. Нахождение в природе предельных углеводородов. Применение метана.

Непредельные углеводороды. Этиленовый ряд непредельных углеводородов. Этилен. Физические и химические свойства этилена.

Ацетиленовый ряд непредельных углеводородов. Ацетилен. Свойства ацетилена. Применение ацетилена.

Производные углеводородов. Краткий обзор органических соединений: одноатомные спирты, карбоновые кислоты, сложные эфиры, жиры, углеводы, аминокислоты, белки. Роль белков в организме.

Понятие о высокомолекулярных веществах. Структура полимеров: мономер, полимер, структурное звено, степень полимеризации. Полиэтилен, полипропилен, поливинилхлорид.

Демонстрации:

Модели молекул органических соединений. Горение углеводородов и обнаружение продуктов их горения. Качественная реакция на этилен. Получение этилена.

Растворение этилового спирта в воде. Растворение глицерина в воде.

Получение и свойства уксусной кислоты. Исследование свойств жиров: растворимость в воде и органических растворителях.

Качественные реакции на глюкозу и крахмал.

Ознакомление с образцами изделий из полиэтилена, полипропилена, поливинилхлорида.

Практические работы сгруппированы в блоки — химические практикумы, которые служат не только средством закрепления умений и навыков, но также и средством контроля за качеством их сформированности.

Перечень цифровых информационных ресурсов.

Интернета: 1. http://ege.yandex.ru/chemistry/ 2. http://chem.reshuege.ru/ 3. http://himege.ru/ 4.

http://pouchu.ru/ 5. http://enprophil.ucoz.ru/index/egeh_alkeny_alkadieny/0-358 6.

http://ximozal.ucoz.ru/_ld/12/1241____4_.pdf 7.

http://fictionbook.ru/author/georgiyi_isaakovich_lerner/biologiya_polniyyi_spravochnik_dlya_podg/read_online.html?pa ge=3 8. http://www.zavuch.info/methodlib/134/ 9.

 $http://keramikos.ru/table.php?ap = table 1000405\ http://sikorskaya-olja.narod.ru/EGE.htm$

10.www.olimpmgou.narod.ru. 11.http://mirhim.ucoz.ru/index/khimija_8_3/0-41